Towards In-Flight Applications? A Review on Dielectric Barrier Discharge-Based Boundary-Layer Control

Author:

Kriegseis Jochen1,Simon Bernhard2,Grundmann Sven3

Affiliation:

1. Institute of Fluid Mechanics (ISTM), Karlsruhe Institute of Technology (KIT), Karlsruhe D-76131, Germany e-mail:

2. Center of Smart Interfaces (CSI), Technische Universität Darmstadt, Griesheim D-64347, Germany e-mail:

3. Department of Fluid Mechanics, University of Rostock, Rostock D-18059, Germany e-mail:

Abstract

Active control of laminar boundary layers with dielectric barrier discharge (DBD) plasma actuators (PAs) has made considerable progress in the last 15 years. First pioneering experiments have motivated numerous researchers to gain a deeper insight into the underlying working principles and corresponding quantification of the actuator performance. These investigations clearly show the strengths but also the weaknesses of the PA as a flow control device. Presently, the boundary-layer control (BLC) with PAs experiences the transition from lab studies to real flight applications. However, the PA community still struggles with the poor fluid mechanic efficiency and the limited momentum flux of the actuator. This review therefore addresses the question how applicable the actuator is as an energy efficient flow control device for future in-flight applications. Since any successful flow control requires detailed knowledge of the actuator’s control authority, this discussion is built upon a careful and comprehensive summary of performance evaluation measures and the interplay with various changes of thermodynamic and kinematic environmental conditions. Consequently, this review for the first time provides a comprehensive discussion of all required steps for successful DBD-based in-flight flow control spanning from the power supply to the achieved flow-control success in one coherent document.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3