Stagnation Flow and Heat Transfer From a Finite Disk Situated Perpendicular to a Uniform Stream

Author:

aus der Wiesche Stefan1,Helcig Christian1

Affiliation:

1. Department of Mechanical Engineering, Muenster University of Applied Sciences, Stegerwaldstraße 39, Steinfurt 48565, Germany

Abstract

Abstract The stagnation flow and heat transfer from the blunt surface of a finite circular disk subjected to a uniform stream of an incompressible fluid is revisited in this paper. A laminar boundary layer analyses were carried out employing the method developed by Frössling. The involved auxiliary functions were calculated for several Prandtl numbers. It was found that the exact knowledge of the velocity at the outer edge of the boundary layer was essential to achieve an accurate velocity solution. In addition to the analytical work, computational fluid dynamics (CFD) simulations and a detailed experimental study were conducted including heat transfer measurements in a wind tunnel and a large water towing tank. The analytical treatment enabled a clear discussion of the effect of the Prandtl number on convective heat transfer from a blunt disk. A primary effect and a secondary effect were distinguished based on the analytical treatment. The boundary layer theory offered a rather efficient calculation method, and its results were in an excellent agreement with experimental data.

Publisher

ASME International

Subject

Mechanical Engineering

Reference28 articles.

1. Boltze, E., 1908, “ Grenzschichten an Rotationskörpern in Flüssigkeiten mit kleiner Reibung,” Ph.D. dissertation, Universität Göttingen, Göttingen, Germany (in German).

2. The Boundary Layer and Skin Friction for a Figure of Revolution;Trans. ASME,1932

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3