Understanding Ice Crystal Accretion and Shedding Phenomenon in Jet Engines Using a Rig Test

Author:

Mason Jeanne G.1,Chow Philip1,Fuleki Dan M.2

Affiliation:

1. Boeing Commercial Airplanes, Seattle, WA 98101

2. Gas Turbine Laboratory, Institute for Aerospace Research, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada

Abstract

The aviation industry has now connected a number of engine power-loss events to the ingestion of atmospheric ice crystals. Ice crystals are believed to penetrate to and eventually accrete on surfaces in the engine core where local air temperatures are warmer than freezing. Research aimed at understanding the accretion and shedding of ice crystals within the engine is being conducted industrywide. Although this specific icing condition is readily produced inside an operating engine, rig testing is the preferred research tool because it has the advantage of good visibility of the ice accretion process and easy access for video documentation. This paper presents one of the first efforts to simulate the warm air/cold ice conditions occurring inside the engine core using a test rig. The test section contains geometry simulating the transition duct between the low and high compressors in a typical jet engine and an airfoil simulating the engine strut connecting the inner and outer surfaces. Test results showed ice formed on the airfoil and other surfaces in the test section at air temperatures warmer than freezing. However, when both the air and surface temperatures were held below freezing, the injected ice did not melt and no ice accretion was observed. Ice only formed on the airfoil when mixed-phase conditions (liquid and ice) were produced, by introducing the ice into a warm airflow. This test concludes that a rig-level ice crystal icing test is feasible and capable of producing ice accretion in a simulated engine environment. As it was the first test of its kind, reporting of these preliminary test results are expected to benefit future experimenters.

Publisher

ASME International

Reference6 articles.

1. The Ice Particle Threat to Engines in Flight;Mason

2. Mazzawy, R. S. , 2009, “Technical Compendium from Meetings of the Engine Harmonization Working Group,” DOT/FAA/AR-09/13.

3. Mazzawy, R. S., and Strapp, J. W., 2007, “Appendix D—An Interim Icing Envelope,” SAE Paper No. 2007-01-3311.

4. McDicken A. , and Bezer, A. D., 1998, BAE Rollback Paper.

5. Cloud Microphysical Measurements in Thunderstorm Outflow Regions During Allied/BAE 1997 Flight Trials;Strapp

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3