Catalytic Combustion of Natural Gas Over Supported Platinum: Flow Reactor Experiments and Detailed Numerical Modeling

Author:

Bond Tami C.1,Noguchi Ryan A.1,Chou Chen-Pang1,Mongia Rajiv K.1,Chen Jyh-Yuan1,Dibble Robert W.1

Affiliation:

1. University of California at Berkeley, Berkeley, CA

Abstract

The use of a noble-metal combustion catalyst such as platinum or palladium in a natural-gas fired turbine can lower NOx (nitrogen oxides, consisting of both NO and NO2) emissions for two reasons. First, most of the combustion occurs on the catalyst surface; surface production of NOx is low or nonexistent. Second, the catalyst permits low temperature combustion below the traditional lean limit, thus inhibiting NOx formation routes in the gas phase. Due to the complexity of the catalytic combustion process, the catalyst has traditionally been modeled as a “black box” that produces a desired amount of fuel conversion. While this approach has been useful for proof-of-concept studies, we expect practical applications to emerge from a greater understanding of the details of the catalytic combustion process. We have constructed a numerical model of catalytic combustion based on the well-accepted CHEMKIN chemical kinetics formalism for gas-phase and surface chemistry. To support the model development, we built a research combustor. We present measured and modeled axial profiles of temperature, fuel conversion, and pollutant emissions for natural-gas combustion over platinum catalysts supported on ceramic honeycomb monoliths. NOx emissions are below 1 ppm, and CO is observed at ppm levels. The data are taken at several lean equivalence ratios and flow rates. Fuel conversion rates occur in two regimes: a low, constant conversion rate and a higher conversion rate that increases linearly with equivalence ratio. The agreement of the numerical model with the measured data is good at temperatures below 900 K; above this temperature, fuel conversion is underpredicted by as much as a factor of two. The predicted surface ignition temperatures agree well with the measured values. Results from the numerical model indicate that the fractional conversion rate of fuel has a linear dependence on the fraction of available surface reaction sites.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3