Flowfield in a Film-Cooled Three-Dimensional Contoured Endwall Passage: Aerodynamic Measurements

Author:

Gustafson Ross1,Mahmood Gazi I.1,Acharya Sumanta1

Affiliation:

1. Louisiana State University, Baton Rouge, LA

Abstract

The influence of endwall film cooling on the aerodynamic performance of a linear blade cascade employing an asymmetric contoured endwall is measured. Cylindrical coolant holes are strategically located on the contoured endwall to provide full coverage film cooling. The endwall contour is varied along the pitch direction, and is elevated near the pressure side and depressed near the suction surface. The profile height also varies in the axial direction from the inlet to exit. Measurements of total pressure, vorticity, and velocity components are obtained at different axial locations inside the passage for six inlet blowing ratios ranging from 1.0 to 2.4. The results are compared with the measured data on the contoured endwall without any film cooling flow (uncooled case). All the tests are performed in a low speed cascade facility employing a scaled up two-dimensional blade profile of the GE-E3 turbine rotor section. The Reynolds number based on the cascade inlet velocity and blade actual chord is 2.30×105. The results near the leading edge show that the suction side-leg vortex on the uncooled endwall weakens when the film cooling jets are employed. The axial vorticity and velocity vectors near the exit plane indicate that the passage vortex is located nearer to the mid-pitch location and higher above the endwall for the film-cooled endwall than for the uncooled contoured endwall. While the overall total pressure loss coefficient across the passage decreases at the high blowing ratios compared to the uncooled case, the overall cascade loss increases with the blowing ratio.

Publisher

ASMEDC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3