A Gas Turbine Cycle Selection Issue: Recuperated or ICR

Author:

Rodgers Colin1,Stone Aubrey2,White David3

Affiliation:

1. ITC, San Diego, CA

2. Retired, San Diego, CA

3. Tritek, San Diego, CA

Abstract

The intercooled recuperative gas turbine (ICR) potentially offers the advantages of higher specific power, and improved thermal efficiency compared to the recuperative gas turbine, such advantages are however contingent upon the additional parasitic encumbrances of the intercooler heat dissipation or recovery apparatus and pressure losses, plus flowpath ducting and complexity. The thermodynamic performances, relative sizing and relative costs of both an ICR and recuperative gas turbine engine, with a thermal efficiency goal approaching 40%, combined with low exhaust emission requirements were studied. The study encompassed primary candidate engine flowpath configurations comprising of single shaft, two shaft, and two spool designs, with both recuperation (R), and combined Intercooling and Recuperation (ICR). In conducting the study all engine flowpaths were sized for 300kW with a maximum turbine inlet temperature of 1837F (1000C), representative of conservative life limits for conventional un-cooled superalloy turbine rotors. Heat exchanger effectivenesses of the intercooler and recuperator were selected at 80 and 85%, as a compromise between cost, weight, and thermal efficiency considerations. The study confirmed that the simple recuperated cycle is capable of comparable peak thermal efficiency levels to the ICR provided that ICR intercooling parasitic losses are duly accounted, and furthermore has intrinsically lower manufacturing and development costs than the ICR. The cycle performance code used for the studies included prediction of engine exhaust emissions, part load characteristics, and compressor operating lines. The emissions assessment slightly favored the ICR as a consequence of its higher specific power. Assuming part load operation at variable speed and constant turbine exhaust temperature, the two spool ICR showed slightly better part load fuel economy than a recuperated engine.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3