Investigations of Shock/Boundary-Layer Interaction in a Highly Loaded Compressor Cascade

Author:

Bell Ralf M.1,Fottner Leonhard1

Affiliation:

1. Universität der Bundeswehr München, Neubiberg, Germany

Abstract

Experimental investigations of the shock/boundary-layer interaction were carried out in a highly loaded compressor cascade under realistic turbomachinery conditions in order to improve the accuracy of semi-empirical flow and loss prediction methods. Different shock positions and strengths were obtained by variations of inlet flow angle and inlet Mach number. The free stream turbulence intensity, depending on the inlet Mach number, changed between 4% and 8%. The influence of the inlet Reynolds number based on blade chord is also examined for two different values (Re1=450000, 900000). Schlieren pictures of the transonic cascade flow reveal an unsteady flow behavior with different shock configurations, depending on the pre-shock Mach number. Wake distributions and boundary-layer measurements with the Laser two-focus velocimetry show that the increase of total pressure loss with increasing inlet Mach number is mainly due to the shock/boundary-layer interaction. The shock interaction with a laminar/transitional boundary-layer causes a wide streamwise pressure diffusion, clearly shown by profile pressure distributions. This has a strong influence on the flow outside of the boundary-layer presented by a quantitative Schlieren image. The transition process, investigated with the analysis of thin-film signals, is induced by the shock-wave and occurs above a separated-flow region. At the higher Reynolds number a shock-induced transition takes place without separation.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3