Differences Between Local and Orbital Dynamic Stability During Human Walking

Author:

Dingwell Jonathan B.1,Kang Hyun Gu1

Affiliation:

1. Department of Kinesiology & Health Education, University of Texas, 1 University Station, D3700 Austin, TX 78712

Abstract

Currently there is no commonly accepted way to define, much less quantify, locomotor stability. In engineering, “orbital stability” is defined using Floquet multipliers that quantify how purely periodic systems respond to perturbations discretely from one cycle to the next. For aperiodic systems, “local stability” is defined by local divergence exponents that quantify how the system responds to very small perturbations continuously in real time. Triaxial trunk accelerations and lower extremity sagittal plane joint angles were recorded from ten young healthy subjects as they walked for 10min over level ground and on a motorized treadmill at the same speed. Maximum Floquet multipliers (Max FM) were computed at each percent of the gait cycle (from 0% to 100%) for each time series to quantify the orbital stability of these movements. Analyses of variance comparing Max FM values between walking conditions and correlations between Max FM values and previously published local divergence exponent results were computed. All subjects exhibited orbitally stable walking kinematics (i.e., magnitudes of Max FM<1.0), even though these same kinematics were previously found to be locally unstable. Variations in orbital stability across the gait cycle were generally small and exhibited no systematic patterns. Walking on the treadmill led to small, but statistically significant improvements in the orbital stability of mediolateral (p=0.040) and vertical (p=0.038) trunk accelerations and ankle joint kinematics (p=0.002). However, these improvements were not exhibited by all subjects (p⩽0.012 for subject × condition interaction effects). Correlations between Max FM values and previously published local divergence exponents were inconsistent and 11 of the 12 comparisons made were not statistically significant (r2⩽19.8%; p⩾0.049). Thus, the variability inherent in human walking, which manifests itself as local instability, does not substantially adversely affect the orbital stability of walking. The results of this study will allow future efforts to gain a better understanding of where the boundaries lie between locally unstable movements that remain orbitally stable and those that lead to global instability (i.e., falling).

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference60 articles.

1. Economic Dimensions of Slip and Fall Injuries;Englander;J. Forensic Sci.

2. Falls in the Elderly;Fuller;Am. Fam. Physician

3. Peripheral Neuropathy: A True Risk Factor for Falls;Richardson;J. Gerontol., Ser. A

4. Incidence and Consequences of Falls Due to Stroke: A Systematic Inquiry;Forster;Br. Med. J. (Clin Res. Ed)

5. Impaired Regulation of Stride Variability in Parkinson’s Disease Subjects With Freezing of Gait;Hausdorff;Exp. Brain Res.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3