Gaseous and Particulate Emissions Results of the NASA Alternative Aviation Fuel Experiment (AAFEX)

Author:

Bulzan Dan1,Anderson Bruce2,Wey Changlie3,Howard Robert4,Winstead Edward5,Beyersdorf Andreas2,Corporan Edwin6,DeWitt Matthew J.7,Klingshirn Chris7,Herndon Scott8,Miake-Lye Richard8,Timko Michael8,Wood Ezra8,Tacina Kathleen M.1,Liscinsky David9,Hagen Donald10,Lobo Prem10,Whitefield Phillip10

Affiliation:

1. NASA Glenn Research Center, Cleveland, OH

2. NASA Langley Research Center, Hampton, VA

3. ASRC Aerospace Corporation, Cleveland, OH

4. Arnold Engine Development Center/ATA, Tullahoma, TN

5. Science Systems and Applications, Inc., Hampton, VA

6. Air Force Research Laboratory - Wright Patterson Air Force Base, Dayton, OH

7. University of Dayton Research Institute, Dayton, OH

8. Aerodyne Research, Inc., Billerica, MA

9. United Technologies Research Center, East Hartford, CT

10. Missouri University for Science and Technology, Rolla, MO

Abstract

The Aircraft Alternative Fuels Emissions experiment (AAFEX) was conducted at National Aeronautic and Space Administration (NASA) Dryden Flight Research Center (DFRC) Aircraft Operations Facility (DAOF) in Palmdale, California, during January and February 2009. The purpose was to systematically investigate the effect of alternative fuels on both gas-phase and particle emissions from a CFM56-2C1 engine on NASA’s DC-8 aircraft parked on the ground as functions of engine power, fuel composition, and exhaust plume age. Emissions parameters were measured at 6 engine power settings, ranging from idle to maximum thrust, in samples collected at 1, 30, and 145 meters (m) downstream of the exhaust plane as the aircraft burned three pure fuels and two fuel blends. The fuels included JP-8, two fuels produced using the Fischer-Tropsch process and 50/50 blends by volume of the F-T fuels with JP-8. The 1 m sampling rakes contained multiple gas and particle inlet probes and could also be traversed in order to measure the spatial variation of emissions across the engine exhaust plane. The #2 inboard engine on the left side always burned JP-8 while the #3 inboard right side engine was fueled with the various fuels and fuel blends. In addition, emissions from the Auxiliary Power Unit (APU) were also evaluated with both JP-8 and one pure F-T fuel. Both gaseous and particulate emissions are presented. Results show that the synthetic fuels reduced pollutant emissions while having relatively little effect on engine operation or performance.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3