A Linearized Unsteady Aerodynamic Analysis for Real Blade Supersonic Cascades

Author:

Montgomery M. D.1,Verdon J. M.1,Fleeter S.2

Affiliation:

1. United Technologies Research Center, Theoretical & Computational Fluid Dynamics, East Hartford, CT 06108

2. Purdue University, School of Mechanical Engineering, West Lafayette, IN 47907

Abstract

The prediction capabilities of a linearized unsteady potential analysis have been extended to include supersonic cascades with subsonic axial flow. The numerical analysis of this type of flow presents several difficulties. First, complex oblique shock patterns exist within the cascade passage. Second, the acoustic response is discontinuous and propagates upstream and downstream of the blade row. Finally, a numerical scheme based on the domain of dependence is required for numerical stability. These difficulties are addressed by developing a discontinuity capturing scheme and matching the numerical near-field solution to an analytical far-field solution. Comparisons with semi-analytic results for flat plate cascades show that reasonable predictions of the unsteady aerodynamic response at the airfoil surfaces are possible, but aeroacoustic response calculations are difficult. Comparisons between flat plate and real blade cascade results show that one effect of real blades is the impulsive loads due to motion of finite strength shocks.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3