Failure Prediction of Pressure Vessels Using Finite Element Analysis

Author:

Evans Christopher J.1,Miller Timothy F.1

Affiliation:

1. Mem. ASME Applied Research Lab, P.O. Box 30, State College, PA 16804 e-mail:

Abstract

This paper investigates using nonlinear finite element analysis (FEA) to determine the failure pressure and failure location for pressure vessels. The method investigated by this paper is to predict the pressure-vessel failure point by identifying the pressure and location where the total mechanical strain exceeds the actual elongation limit of the material. A symmetrically shaped component and a nonsymmetric shaped component are analyzed to determine the failure pressure and location. Data were then gathered by testing each pressure vessel to determine its actual failure pressure. Comparing the FEA results with experimental data showed that the fea software predicted the failure pressure and location very well for the symmetric shaped pressure vessel, however, for the nonsymmetrical shaped pressure-vessel, the fea software predicted the failure pressure within a reasonable range, but the component failed at a weld instead of the predicted location. This difference in failure location was likely caused by varying material properties in both the weld and the location where the vessel was predicted to fail.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3