Experimental Investigations and Analytical Improvements for HTR Pebble Bed Cores

Author:

Allelein H.-J.12,Schloegl B.1,Baggemann J.2,Juehe S.1,Kasselmann S.2

Affiliation:

1. RWTH Aachen University, Aachen, Germany

2. Forschungszentrum Juelich GmbH, Juelich, Germany

Abstract

One of the main research topics of the Chair for Reactor Safety and Technology at RWTH Aachen University and the Institute for Nuclear Waste Management and Reactor Safety (IEK-6) deals with accident scenarios of gas-cooled High-Temperature Reactors, especially the air ingress scenario. Two experimental facilities have just started operation providing experimental data for the validation and improvement of fluid mechanics codes being developed and applied at IEK-6. The INDEX (INDuction EXperiment) facility is able to heat up single spheres inductively up to 1200°C while exposed to defined gas atmospheres and gas flow conditions. This experimental setup is well suited to study pebble / gas flow interactions as well as graphite corrosion phenomena in detail. The NACOK II (NAturzug im COre mit Korrosion) facility is an integral experiment for fluid mechanics and graphite corrosion processes under natural convection effects. It will examine spherical fuel element samples as well as prismatic blocks. In addition the instrumentation is suitable for CFD validation calculations, for example because PIV (particle image velocity) is applied. The data obtained are used to validate and improve computational fluid dynamics (CFD) models for pebble bed reactors or reactor dynamics code like MGT-3D, which are able to simulate air ingress scenarios. The CFD model shall be able to simulate the fluid mechanics as well as the corrosion processes of after a total pressure release. In this paper we report on the status of the experimental facilities as well as on advances in modelling the fluid mechanics of HTR pebble cores.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3