Effects of Rib Arrangements on Heat Transfer and Flow Behavior in a Rectangular Rib-Roughened Passage: Application to Cooling of Gas Turbine Blade Trailing Edge

Author:

Kiml Robert1,Mochizuki Sadanari1,Murata Akira1

Affiliation:

1. Tokyo University of Agriculture and Technology, Department of Mechanical Systems Engineering, Nakacho 2-24-16, Koganei-shi, Tokyo 184-8588, Japan

Abstract

Experimentation was conducted to examine the heat transfer and pressure drop characteristics in a rib-roughened rectangular passage with aspect ratio 2:1 for four rib configurations: 90 deg, 75 deg, 60 deg and 45 deg oblique ribs. The ribs were attached to two opposing long side walls instead of short side walls. In this study the oblique ribs were intended to function as secondary flow inducers as well as turbulators to improve the heat transfer of the bottom wall (one of the short side walls). The results revealed that, in order to enhance the heat transfer of the bottom wall, the oblique ribs should be arranged so that the secondary flow along the ribs hits the top wall instead of the bottom wall. Flow visualization test was performed to understand the heat transfer mechanisms. It was confirmed that the heat transfer enhancement at the bottom wall was attributed to the rib-induced secondary flow where the flow along the ribs hit the top wall, turned back and carried cold air from the passage core region towards the bottom wall. The highest average heat transfer was achieved for the 60 deg rib pattern due to the strong rotational momentum of the secondary flow and higher heat transfer enhancement on the rib-roughened walls in comparison to the other three rib patterns.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3