The Effect of Load Reduction on Crack Initiation Behavior of Hydrides From Flaws in Zr-2.5Nb Pressure Tube Material

Author:

Cui Jun1,Shek Gordon K.1

Affiliation:

1. Kinectrics Inc., Toronto, ON, Canada

Abstract

Flaws in Zr-2.5Nb alloy pressure tubes in CANDU® nuclear reactors are susceptible to a crack initiation and growth mechanism known as Delayed Hydride Cracking (DHC). DHC is a repetitive process that involves hydrogen diffusion, hydride precipitation, growth of the hydrided region, and fracture of the hydrided region at the flaw tip. One scenario of crack initiation is that the flaw-tip hydrides are formed and cracked at the same stress under constant reactor operating pressure. This is known as crack initiation under constant-load condition. Another scenario of crack initiation is that the flaw-tip hydrides are formed at the operating pressure and then cracked during a transient over-pressure. This is known as crack initiation under overload condition as the hydrides are subjected to a stress higher than the hydride formation stress. In some CANDU reactors, a 20% reduction in pressure is implemented during reactor cool-down. This paper examines the effect of pressure reduction, and hence load reduction, on flaw-tip hydride morphology and crack initiation behavior under constant-load and overload conditions. Experiments were performed on specimens of an unirradiated Zr-2.5Nb pressure tube, with 57 wt. ppm hydrogen concentration. The specimens contained machined V-notches with a root radius of 0.015 mm to simulate service-induced debris fretting flaws. The results indicate that the 20% load reduction increases the threshold stresses for crack initiation under constant-load and overload conditions. Finite element stress analyses were performed to determine the notch-tip stress distribution under constant-load and 20% load-reduction conditions. The load reduction lowers the notch-tip peak stress and shifts its location away from the notch surface. This is consistent with the notch-tip hydride morphologies observed using optical and scanning electron microscopy.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3