Correlation Between Microstructure and Mechanical Properties in an Inconel 718 Deposit Produced Via Electron Beam Freeform Fabrication

Author:

Tayon Wesley A.1,Shenoy Ravi N.2,Redding MacKenzie R.3,Keith Bird R.4,Hafley Robert A.4

Affiliation:

1. NASA Langley Research Center, Hampton, VA 23681 e-mail:

2. Northrop Grumman, Technical Services Hampton, VA 23681

3. Engineering Physics Department, University of Virginia, Charlottesville, VA 22904

4. NASA Langley Research Center, Hampton, VA 23681

Abstract

Electron beam freeform fabrication (EBF3), a metallic layer-additive manufacturing process, uses a high-power electron beam in conjunction with a metal feed wire to create a molten pool on a substrate, which on solidification produces a component of the desired configuration made of sequentially deposited layers. During the build-up of each solidified layer, the substrate is translated with respect to the electron beam and the feed wire. EBF3 products are similar to conventional cast products with regard to the as-deposited (AD) microstructure and typical mechanical properties. Inconel 718 (IN 718), a high-temperature superalloy with attractive mechanical and oxidation properties well suited for aerospace applications, is typically used in the wrought form. The present study examines the evolution of microstructure, crystallographic texture, and mechanical properties of a block of IN 718 fabricated via the EBF3 process. Specimens extracted out of this block, both in the AD and in a subsequently heat treated (HT) condition, were subjected to (1) microstructural characterization using scanning electron microscopy (SEM); (2) in-plane elastic modulus, tensile strength, and microhardness evaluations; and (3) crystallographic texture characterization using electron backscatter diffraction (EBSD). Salient conclusions stemming from this study are: (1) mechanical properties of the EBF3-processed IN 718 block are strongly affected by texture as evidenced by their dependence on orientation relative to the EBF3 fabrication direction, with the AD EBF3 properties generally being significantly reduced compared to wrought IN 718; (2) significant improvement in both strength and modulus of the EBF3 product to levels nearly equal to those for wrought IN 718 may be achieved through heat treatment.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference22 articles.

1. Electron Beam Freeform Fabrication (EBF3) for Cost Effective Near-Net Shape Manufacturing,2006

2. Taminger, K., and Hafley, R., 2003, “Electron Beam Freeform Fabrication: A Rapid Metal Deposition Process,” 3rd Annual Automotive Composites Conference, Troy, MI, Sept. 9–10, Society of Plastics Engineers, Troy, MI.

3. Tensile Properties and Microstructure of Inconel 718 Fabricated With Electron Beam Freeform Fabrication (EBF3),2009

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3