Steady Flow and Wall Compression in Stenotic Arteries: A Three-Dimensional Thick-Wall Model With Fluid–Wall Interactions

Author:

Tang Dalin1,Yang Chun1,Kobayashi Shunichi1,Ku David N.1

Affiliation:

1. Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609

Abstract

Severe stenosis may cause critical flow and wall mechanical conditions related to artery fatigue, artery compression, and plaque rupture, which leads directly to heart attack and stroke. The exact mechanism involved is not well understood. In this paper, a nonlinear three-dimensional thick-wall model with fluid–wall interactions is introduced to simulate blood flow in carotid arteries with stenosis and to quantify physiological conditions under which wall compression or even collapse may occur. The mechanical properties of the tube wall were selected to match a thick-wall stenosis model made of PVA hydrogel. The experimentally measured nonlinear stress–strain relationship is implemented in the computational model using an incremental linear elasticity approach. The Navier–Stokes equations are used for the fluid model. An incremental boundary iteration method is used to handle the fluid–wall interactions. Our results indicate that severe stenosis causes considerable compressive stress in the tube wall and critical flow conditions such as negative pressure, high shear stress, and flow separation which may be related to artery compression, plaque cap rupture, platelet activation, and thrombus formation. The stress distribution has a very localized pattern and both maximum tensile stress (five times higher than normal average stress) and maximum compressive stress occur inside the stenotic section. Wall deformation, flow rates, and true severities of the stenosis under different pressure conditions are calculated and compared with experimental measurements and reasonable agreement is found.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3