Unified Kinematics Analysis and Low-Velocity Driving Optimization for Parallel Hip Joint Manipulator

Author:

Wang Song-Tao12,Cheng Gang2,Yang De-Hua3,Yang Jian-Hua2

Affiliation:

1. Automotive Engineering Department, Chengde Petroleum College, Chengde University Park, Chengde, Hebei 067000, China;

2. School of Mechanical and Electrical Engineering, China University of Mining and Technology, No. 1, University Road, Xuzhou, Jiangsu 221116, China e-mail:

3. National Astronomical Observatories/Nanjing Institute of Astronomical Optics and Technology, Chinese Academy of Sciences, No. 188, Bancang Street, Nanjing, Jiangsu 210042, China e-mail:

Abstract

Unified modeling for the kinematics analysis of a parallel hip joint manipulator (PHJM) is proposed, and structural parameters of the PHJM are optimized based on the unified model for obtaining low-velocity driving performance. Based on the finite element theory, a unified model for kinematics analysis is established, and the Monte Carlo method is subsequently proposed to solve the workspace for the PHJM. To optimize the workspace, a 6 surface-14 point (6 S-14 P) method is proposed to judge whether the workspace includes the task space. The structural parameters are further optimized to obtain low-velocity driving performance, and the motion performances of the PHJM with the optimal parameter are numerically simulated. The velocity simulation results demonstrate that the maximum relative velocity of the PHJM with the optimal parameter decreases by 23.2%. The unified kinematics analysis and low-velocity driving optimization effectively improve the performance for the PHJM and enrich the optimization theory for parallel manipulators with high velocities and given tasks.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3