Recruitment of Tendon Crimp With Applied Tensile Strain

Author:

Hansen Kristi A.1,Weiss Jeffrey A.2,Barton Jennifer K.1

Affiliation:

1. Biomedical Engineering Program, The University of Arizona, 1230 E. Speedway Blvd., Tucson, AZ 85721

2. Department of Bioengineering, The University of Utah, 50 S Central Campus Dr #2480, Salt Lake City, UT 84112

Abstract

The tensile stress-strain behavior of ligaments and tendons begins with a toe region that is believed to result from the straightening of crimped collagen fibrils. The in situ mechanical function is mostly confined to this toe region and changes in crimp morphology are believed to be associated with pathological conditions. A relatively new imaging technique, optical coherence tomography (OCT), provides a comparatively inexpensive method for nondestructive investigation of tissue ultrastructure with resolution on the order of 15 μm and the potential for use in a clinical setting. The objectives of this work were to assess the utility of OCT for visualizing crimp period, and to use OCT to determine how crimp period changed as a function of applied tensile strain in rat tail tendon fascicles. Fascicles from rat tail tendons were subjected to 0.5 percent strain increments up to 5 percent and imaged at each increment using OCT. A comparison between OCT images and optical microscopy images taken between crossed polarizing lenses showed a visual correspondence between features indicative of crimp pattern. Crimp pattern always disappeared completely before 3 percent axial strain was reached. Average crimp period increased as strain increased, but both elongation and shortening occurred within single crimp periods during the application of increasing strain to the fascicle.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3