System and Component Level Risk Assessment for SiC MOSFET Based Inverter for Traction Application at High Coolant Temperatures and Off-Road Mission Profile

Author:

Mohammad Nafis Bakhtiyar1,Mahmud Mohammad2,Wang Zhongjing2,Wu Yuheng2,Huitink David1,Zhao Yue2

Affiliation:

1. Mechanical Engineering Department, University of Arkansas, Fayetteville, AR 72701

2. Electrical Engineering Department, University of Arkansas, Fayetteville, AR 72701

Abstract

Abstract Monitoring and predicting temperatures at critical locations of a power electronic system is important for safety, reliability, and efficiency. As the market share of vehicles with electric powertrains continues to increase, there is also an important economic cost of failing electronic components. For inverters present in such a drive system, exceeding the temperature limit for certain critical components, such as DC-link capacitors and Silicon carbide MOSFETs, can lead to failure of the system. In such an application, extracting the temperatures using sensors from locations such as dies and capacitors require expensive modifications and poses technical challenges. It is therefore necessary to create a thermal model for the inverter system to estimate the temperature at various components in order to ensure operation within temperature limits. The model approach is also suitable for predicting the effect on the component temperature and reliability of boundary conditions such as coolant, ambient temperature, and mission profile. This study assesses the reliability of a 250 kW liquid cooled inverter system designed for traction application. The critical failure areas are the DC-link capacitors, and the SiC MOSFET dies, which are rated at 175 °C. The system is modeled as a compact system by reasonably considering each component as a lumped capacitance and estimating the thermal resistance using physical dimensions. Results from the model are then compared against experimental data from constant power testing, and good agreement is observed for the cold plate and gate driver temperatures. With the model fidelity established, the model is then used to implement drive cycles from the Environmental Protection Agency for nonroad applications. The resulting temperature profile for each component is a series of temperature peaks and troughs that contribute to damage and failure. Rainflow counting algorithm is then used to quantify the damage per mini-cycles and used to estimate the predicted life for each component based on their manufacturer provided reliability qualification, and the mission profile is executed on the test bench for validation. The results are then used to generate a system risk matrix that relates the failure risk associated with a certain mission profile and the cooling scheme. It therefore demonstrates that an automotive inverter with SiC switching devices can be credibly assessed for failure risk using a compact model that is independent of boundary conditions, in combination with established reliability correlations and techniques.

Funder

Advanced Research Projects Agency - Energy

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference25 articles.

1. Power Semiconductor Devices for Hybrid, Electric, and Fuel Cell Vehicles,2007

2. SiC Power Devices for Smart Grid Systems;IPEC),2010

3. High-Temperature Electronics - A Role for Wide Bandgap Semiconductors?;Proc. IEEE

4. Reliability Issues of SiC MOSFETs: A Technology for High-Temperature Environments;IEEE Trans. Device Mater. Reliab.,2010

5. Feasibility Study of a 55-kW Air-Cooled Automotive Inverter,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3