Abrasive Wear in Machining: Experiments With Materials of Controlled Microstructure

Author:

Ramalingam S.1,Wright P. K.2

Affiliation:

1. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Ga. 30332

2. Department of Mechanical Engineering, Carnegie-Mellon University, Pittsburgh, Pa. 15213

Abstract

Evidence is presented to show that hard inclusions in iron-base alloys degrade machinability by reducing cutting tool life. Machining experiments have been carried out on Fe-C-Silica and Fe-C-Alumina powder metal compacts containing varying amounts of abrasive. In addition, two stainless steels have been compared. One of these was titanium stabilized hence containing hard TiC particles; the other was unstabilized and free of such particles. In all these experiments the tool wear rate increased with volume fraction of hard inclusions. Abrasive wear mechanisms have been identified using detailed metallography. When machining with high-speed steels, rake face wear by abrasion occurs by a plastic plowing process and this is enhanced if the tool is thermally weakened. When machining with cemented carbide tools the results indicate that the temperatures in the crater region are high enough for the same plastic plowing of tool material to occur. By contrast, temperatures at the flank face are 300–400°C lower and the wear processes are of a different nature.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of cutting speed on wear type of carbide tools MMT16ERAG60 for threading S45C steel;VII INTERNATIONAL CONFERENCE “SAFETY PROBLEMS OF CIVIL ENGINEERING CRITICAL INFRASTRUCTURES” (SPCECI2021);2023

2. Shift of wear balance acting on CVD textured coatings and relation to workpiece materials;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2020-05-21

3. Microstructure, Hardness, Wear, and Magnetic Properties of (Tantalum, Niobium) Carbide-Nickel–Sintered Composites Fabricated from Blended and Coated Particles;Materials Performance and Characterization;2020-04-01

4. Force-based reliability estimation of remaining cutting tool life in titanium milling;The International Journal of Advanced Manufacturing Technology;2020-01-04

5. Microstructural variations in 316L austenitic stainless steel and their influence on tool wear in machining;Wear;2019-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3