Flow and Morphological Conditions Associated With Unidirectional Solidification of Aqueous Ammonium Chloride

Author:

Magirl C. S.1,Incropera F. P.1

Affiliation:

1. Heat Transfer Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

Using a 27 percent aqueous ammonium chloride solution as a transparent analog, shadowgraph and dye injection techniques have been employed to observe flow and morphological conditions associated with unidirectional solidification (UDS) from below. Dendritic crystals, which initially form at the cold surface, reject lighter, solute deficient fluid, and the attendant instability is manifested by finger-type double-diffusive convection phenomena. As a two-phase (solid/liquid), or mushy, region grows from the bottom surface, vertical channels develop in the mushy region, and solutal plumes that emanate from the channels are characterized primarily by an ascending, oscillatory motion and secondarily by wisps of fluid, which detach and descend from bends in the plumes. In time, double-diffusive convection layers also form in the melt. From a numerical simulation of the process, it is concluded that the channels originate from perturbations at the liquid interface, which cause localized remelting and create conditions conducive to development of the channels.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3