Experimental Investigation of the Effect of Heat Pipe Tilting on a Concentrated Photovoltaic/Heat Pipe Passive Cooling System

Author:

Lashin Abdelrahman12,Sabry Mohamed13

Affiliation:

1. Umm Al Qura University Department of Physics, College of Science, , Makkah 21955 , Saudi Arabia ;

2. Mansoura University Department of Physics, Faculty of Science, , Mansoura 35516 , Egypt

3. National Research Institute of Astronomy and Geophysics Photovoltaic Unit, Solar Physics Laboratory, , Cairo 11421 , Egypt

Abstract

Abstract To maintain the concentrated photovoltaic systems (CPV) output, effective cooling is necessary. In contrast to costly and complicated active cooling methods, passive cooling is static, simple, and maintenance-free. Among passive techniques, Heat Pipes (HPs) are devices that efficiently transfer heat from the evaporator to the condenser. The inclination angle of wicked, liquid-filled HP's long-axis determines how well it cools, as an effect of the gravitational force acting on the condensed liquid. This study investigates the effect of tilting the HP long-axis on the performance of the different parameters of the CPV, which is passively cooled by thermal attachment to its back side. Two similar HPs except for their lengths were attached alternatively. Different concentrated illumination levels are then allowed to be incident on the CPV. At each illumination level, the inclination of the HP long-axis was varied from −90 deg (completely vertical with condenser up) to 90 deg (completely vertical with condenser down), passing through 0 deg (HP is completely horizontal) with a step of 15 deg. The effect of such variations on the inclinations has been tested on the two systems. The system incorporating the long HP was found to have a higher cooling performance at an angle of −15 deg, compared to the short HP system, which has its highest cooling capacity at an angle of −60 deg, with an increase of about 7% for the maximum power in case of using the former system compared to the latter.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3