Subharmonic Resonance Cascades in a Class of Coupled Resonators

Author:

Strachan B. Scott1,Shaw Steven W.2,Kogan Oleg3

Affiliation:

1. e-mail:

2. e-mail:  Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48823

3. Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 e-mail:

Abstract

We consider a chain of N nonlinear resonators with natural frequency ratios of approximately 2:1 along the chain and weak nonlinear coupling that allows energy to flow between resonators. Specifically, the coupling is such that the response of one resonator parametrically excites the next resonator in the chain, and also creates a resonant back-action on the previous resonator in the chain. This class of systems, which is a generic model for passive frequency dividers, is shown to have rich dynamical behavior. Of particular interest in applications is the case when the high frequency end of the chain is resonantly excited, and coupling results in a cascade of subharmonic bifurcations down the chain. When the entire chain is activated, that is, when all N resonators have nonzero amplitudes, if the input frequency on the first resonator is Ω, the terminal resonator responds with frequency Ω/2N. The details of the activation depend on the strength and frequency of the input, the level of resonator dissipation, and the frequency mistuning in the chain. In this paper we present analytical results, based on perturbation methods, which provide useful predictions about these responses in terms of system and input parameters. Parameter conditions for activation of the entire chain are derived, along with results about other phenomena, such as the period doubling accumulation to full activation, and regions of multistability. We demonstrate the utility of the predictive results by direct comparison with simulations of the equations of motion, and we also present a sample mechanical system that embodies the desired properties. These results are useful for the design and operation of mechanical frequency dividers that are based on subharmonic resonances.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference12 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tailoring Nonlinear Normal Modes and Managing Bifurcations;CISM International Centre for Mechanical Sciences;2024

2. Non-reciprocal frequency conversion in a two-dimensional waveguide incorporating a local nonlinear gate;Communications in Nonlinear Science and Numerical Simulation;2023-04

3. Model reduction for constrained mechanical systems via spectral submanifolds;Nonlinear Dynamics;2023-02-19

4. A novel MEMS sensor concept to improve signal-to-noise ratios;International Journal of Non-Linear Mechanics;2022-03

5. Nonlinear dynamics of mode-localized MEMS accelerometer with two electrostatically coupled microbeam sensing elements;International Journal of Non-Linear Mechanics;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3