Deep Learning-Based Denoising of Acoustic Images Generated With Point Contact Method

Author:

Jadhav Suyog1,Kuchibhotla Ravali2,Agarwal Krishna3,Habib Anowarul3,Prasad Dilip K.1

Affiliation:

1. UiT The Arctic University of Norway Department of Computer Science, , Tromsø 9019 , Norway

2. Indian Institute of Technology (ISM) , Dhanbad 826004 , India

3. UiT The Arctic University of Norway Department of Physics and Technology, , Tromsø 9019 , Norway

Abstract

Abstract The versatile nature of ultrasound imaging finds applications in various fields. A point contact excitation and detection method is generally used for visualizing the acoustic waves in Lead Zirconate Titanate (PZT) ceramics. Such an excitation method with a delta pulse generates a broadband frequency spectrum and wide directional wave vector. The presence of noise in the ultrasonic signals severely degrades the resolution and image quality. Deep learning-based signal and image denoising have been demonstrated recently. This paper bench-marked and compared several state-of-the-art deep learning image denoising methods with the classical denoising methods. The best-performing deep learning models are observed to be performing at par or, in some cases, even better than the classical methods on ultrasonic images. We further demonstrate the effectiveness and versatility of the deep learning-based denoising model for the unexplored domain of ultrasound/ultrasonic data. We conclude with a discussion on selecting the best method for denoising ultrasonic images. The impact of this work may help ultrasound-based defects identification equipment manufacturers to adopt a deep learning-based denoising model for more wider and versatile use.

Publisher

ASME International

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3