Dry Grinding: A More Sustainable Manufacturing Process for the Production of Automotive Gears

Author:

Fortunato Alessandro1,Liverani Erica1,Cestone Lorenzo21,Lerra Flavia3,Ascari Alessandro1,Iqbal Hambal21,Lutey Adrian H.A.44

Affiliation:

1. Alma Mater Studiorum—University of Bologna Department of Industrial Engineering (DIN), , Viale Risorgimento 2, Bologna 40136 , Italy

2. University of Bologna Department of Industrial Engineering (DIN), , Viale Risorgimento 2, Bologna 40136 , Italy

3. Ferrari S.p.a , Viale Enzo Ferrari 27, Maranello, Modena I-41053 , Italy

4. University of Parma Department of Engineering and Architecture, , Parco Area delle Scienze, 181/A, Parma 43124 , Italy

Abstract

Abstract Gears represent a fundamental component of automotive transmissions, the performance of which is directly influenced by flank surface integrity. With the exception of grinding, gear production does not require the use of lubricants. The elimination of oils in the final finishing phase represents an important opportunity to greatly improve process sustainability and reduce production costs. However, dry grinding presents several challenges, including dimensional tolerances and roughness requirements, microstructural defects due to excessive heat generation, and maintaining the overall surface integrity of flanks such that wear resistance is not compromised. The present work investigates the geometric accuracy, microstructure, and wear resistance of FIAT 500 4/6 speed gears manufactured by FCA/Stellantis, comparing conventional wet grinding with two alternative processes including superfinishing and dry grinding. The material and manufacturing processes employed prior to grinding were the same in all cases, with grinding then performed by the same manufacturer. The dimensional accuracy, roughness, microstructure, residual stress state, and wear resistance of gear flanks were then analyzed to compare the overall performance of each grinding process. The obtained results show that dry grinding can produce gears with acceptable geometric accuracy, no microstructure defects and greater wear resistance than gears finished with conventional wet grinding or superfinishing. As a result, the complete elimination of lubricant in gear production is possible, leading to a more sustainable process without compromising gear performance.

Funder

Directorate-General for Research and Innovation

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3