Effect of Dispersion Conditions on the Thermal and Mechanical Properties of Carbon Nanofiber–Polyester Nanocomposites

Author:

Hossain M. E.1,Hossain M. K.2,Hosur M. V.3,Jeelani S.3

Affiliation:

1. Department of Mechanical Engineering Technology, NYCCT, City University of New York, New York, NY 11201 e-mail:

2. Department of Mechanical Engineering, Tuskegee University, Tuskegee, AL 36088 e-mail:

3. Department of Materials Science and Engineering, Tuskegee University, Tuskegee, AL 36088

Abstract

In this study, sonication dispersion technique was employed to infuse 0.1–0.4 wt.% carbon nanofibers (CNFs) into polyester matrix to enhance thermomechanical properties of resulting nanocomposites. The effect of dispersion conditions has been investigated with regard to the CNF content and the sonication time. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) micrographs revealed excellent dispersion of 0.2 wt.% CNF infused in polyester, resulting in enhanced mechanical responses. Polyester with 0.2 wt.% CNF samples resulted in 88% and 16% increase in flexural strength and modulus, respectively, over the neat one. Quasi-static compression tests showed similar increasing trend with addition of CNF. Fracture morphology study of tested samples revealed relatively rougher surface in CNF-loaded polyester compared to the neat due to better interaction between the fiber and the matrix. Dynamic mechanical analysis (DMA) study exhibited about 35% increase in the storage modulus and about 5 °C increase in the glass transition temperature (Tg). A better thermal stability in the CNF-loaded polyester was observed from the thermogravimetric analysis (TGA) studies. Best results were obtained for the 0.2 wt.% CNF loading with 90 mins of sonication and 50% sonication amplitude. It is recommended that this level of sonication facilitates suitable dispersion of the CNF into polyester matrices without destroying the CNF's structure.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3