Effect of Microstructure on the Machinability of Natural Fiber Reinforced Plastic Composites: A Novel Explainable Machine Learning (XML) Approach

Author:

Ma Qiyang1,Zhong Yuhao2,Wang Zimo1,Bukkapatnam Satish2

Affiliation:

1. State University of New York at Binghamton Department of Systems Science and Industrial Engineering, , Binghamton, NY 13902

2. Texas Agricultural and Mechanical University Department of Industrial & Systems Engineering, , College Station , TX 77843

Abstract

Abstract Natural fiber-reinforced plastic (NFRP) composites are ecofriendly and biodegradable materials that offer tremendous ecological advantages while preserving unique structures and properties. Studies on using these natural fibers as alternatives to conventional synthetic fibers in fiber-reinforced materials have opened up possibilities for industrial applications, especially for sustainable manufacturing. However, critical issues reside in the machinability of such materials because of their multiscale structure and the randomness of the reinforcing elements distributed within the matrix basis. This paper reports a comprehensive investigation of the effect of microstructure heterogeneity on the resultant behaviors of cutting forces for NFRP machining. A convolutional neural network (CNN) links the microstructural reinforcing fibers and their impacts on changing the cutting forces (with an estimated R-squared value over 90%). Next, a model-agnostic explainable machine learning approach is implemented to decipher this CNN black-box model by discovering the underlying mechanisms of relating the reinforcing elements/fibers’ microstructures. The presented xml approach extracts physical descriptors from the in-process monitoring microscopic images and finds the causality of the fibrous structures’ heterogeneity to the resultant machining forces. The results suggest that, for the heterogeneous fibers, the tightly and evenly bounded fiber elements (i.e., with lower aspect ratio, lower eccentricity, and higher compactness) strengthen the material and thereafter play a significant role in increasing the cutting forces during NFRP machining. Therefore, the presented framework of the explainable machine learning approach opens an opportunity to discover the causality of material microstructures on the resultant process dynamics and accurately predict the cutting behaviors during material removal processes.

Funder

Binghamton University

Office of International Science and Engineering

Texas A and M University

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3