Study of Buoyancy-Driven Flow Effect on Salt Gradient Solar Ponds Performance

Author:

Derakhshan Shahram1,Mirazimzadeh Seyedeh Elnaz2,Pazireh Syamak2

Affiliation:

1. Iran University of Science and Technology, Tehran 16846-13114, Iran, e-mail:

2. Iran University of Science and Technology, Tehran 16846-13114, Iran e-mail:

Abstract

Salt gradient solar ponds are the ponds in which due to existence of saline and salt gradient layers, lower layers are denser and avoid the natural convection phenomenon to occur so that solar radiation energy can be stored in the lowest zone. In this study, one-dimensional (1D) and two-dimensional (2D) numerical approaches have been implemented to simulate unsteady buoyancy-driven flow of solar ponds. In 1D method, the pond has been investigated in terms of the layers thicknesses so that the variation of temperature is calculated by energy conservation equation. The formulized radiation term was used as energy source term in energy equation. The results of 1D approach were validated with an experimental study and then optimization was carried out to determine the maximum thermal efficiency for an interval of layers height. Since the stability of the solar pond cannot be determined by 1D simulation, a 2D approach was considered to show the stability for different nonconvective zone (NCZ) heights and different salt gradients. In 2D study, in order to investigate hydrodynamic and thermal behavior of saltwater fluid, a numerical approach was used to simulate temperature gradients throughout the pond. The results of 2D numerical method are validated with an experimental data. The effect of linear and nonlinear salt gradient was considered.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3