An Efficient Reliability Analysis Method Based on the Improved Radial Basis Function Neural Network

Author:

Zhang Dequan1,Zhao Zida1,Ouyang Heng1,Wu Zeping2,Han Xu1

Affiliation:

1. Hebei University of Technology State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, , Tianjin 300401 , China

2. National University of Defense Technology College of Aerospace Science and Engineering, , Changsha 410073, Hunan , China

Abstract

Abstract This paper develops an efficient reliability analysis method based on the improved radial basis function neural network (RBFNN) to increase the accuracy and efficiency of structural reliability analysis. To solve the problems of low computational accuracy and efficiency of the RBFNN, an improved RBFNN method is developed by transferring the sampling center of Latin hypercube sampling (LHS) from the mean values of random variables to the most probable point (MPP) in the sampling step. Then, the particle swarm optimization algorithm is adopted to optimize the shape parameters of RBFNN, and the RBFNN model is assessed by the cross-validation method for subsequent reliability analysis using Monte Carlo simulation (MCS). Four numerical examples are investigated to demonstrate the correctness and effectiveness of the proposed method. To compare the computational accuracy and efficiency of the proposed method, the traditional radial basis function method, hybrid radial basis neural network method, first-order reliability method (FORM), second-order reliability method (SORM), and MCS method are applied to solve each example. All the results demonstrate that the proposed method has higher accuracy and efficiency for structural reliability analysis. Importantly, one practical example of an industrial robot is provided here, which demonstrates that the developed method also has good applicability and effectiveness for complex engineering problems.

Funder

Hebei Province Science and Technology Support Program

National Natural Science Foundation of China

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3