Compressor Performance and Operability in Swirl Distortion

Author:

Sheoran Yogi1,Bouldin Bruce1,Krishnan P. Murali2

Affiliation:

1. Honeywell Aerospace, 111 South 34th Street M/S 503-428, Phoenix, AZ 85034

2. Honeywell Technology Solutions, Survey No. 19/2, Devarabisanahalli Village, KR Puram Hobli, Bangalore East Taluk, Bangalore 560 037, India

Abstract

Inlet swirl distortion has become a major area of concern in the gas turbine engine community. Gas turbine engines are increasingly installed with more complicated and tortuous inlet systems such as those found on embedded installations on unmanned aerial vehicles. These inlet systems can produce complex swirl patterns in addition to total pressure distortion. The effect of swirl distortion on engine or compressor performance and operability must be evaluated. The gas turbine community is developing methodologies to measure and characterize swirl distortion. There is a strong need to develop a database containing the impact of a range of swirl distortion patterns on a compressor performance and operability. A recent paper presented by the authors described a versatile swirl distortion generator system that produced a wide range of swirl distortion patterns of a prescribed strength, including bulk swirl, twin swirl, and offset swirl. The design of these swirl generators greatly improved the understanding of the formation of swirl. The next step of this process is to understand the effect of swirl on compressor performance. A previously published paper by the authors used parallel compressor analysis to map out different speed lines that resulted from different types of swirl distortion. For the study described in this paper, a computational fluid dynamics (CFD) model is used to couple upstream swirl generator geometry to a single stage of an axial compressor in order to generate a family of compressor speed lines. The complex geometry of the analyzed swirl generators requires that the full 360 deg compressor be included in the CFD model. A full compressor can be modeled several ways in a CFD analysis, including sliding mesh and frozen rotor techniques. For a single operating condition, a study was conducted using both of these techniques to determine the best method, given the large size of the CFD model and the number of data points that needed to be run to generate speed lines. This study compared the CFD results for the undistorted compressor at 100% speed to comparable test data. Results of this study indicated that the frozen rotor approach provided just as accurate results as the sliding mesh but with a greatly reduced cycle time. Once the CFD approach was calibrated, the same techniques were used to determine compressor performance and operability when a full range of swirl distortion patterns were generated by upstream swirl generators. The compressor speed line shift due to co-rotating and counter-rotating bulk swirl resulted in a predictable performance and operability shift. Of particular importance is the compressor performance and operability resulting from an exposure to a set of paired swirl distortions. The CFD generated speed lines follow similar trends to those produced by parallel compressor analysis.

Publisher

ASME International

Subject

Mechanical Engineering

Reference10 articles.

1. Society of Automotive Engineers, 2002, “Gas Turbine Inlet Flow Distortion Guidelines,” Revision B, No. ARP 1420.

2. Society of Automotive Engineers, 1983, “Inlet Total-Pressure Distortion Considerations for Gas Turbine Engines,” Aerospace Information Report No. AIR 1419.

3. Society of Automotive Engineers, 1991, “A Current Assessment of the Inlet/Engine Temperature Distortion Problem,” Aerospace Resource Document No. ARD50015.

4. Development of Intake Swirl Generators;Fottner

5. Bouldin, B., and Sheoran, Y., 2002, “Inlet Flow Angularity Descriptors Proposed for Use With Gas Turbine Engines,” SAE Paper No. 2002-01-2919.

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3