Reciprocating Battery Cooling for Hybrid and Fuel Cell Vehicles

Author:

Park Chanwoo1,Jaura Arun K.1

Affiliation:

1. Ford Motor Company, Dearborn, MI

Abstract

Traction batteries for hybrid and fuel cell vehicles must maintain temperatures within operational limits for longer battery lifetime and better performance. The uneven battery temperature due to improper heat transfer during discharging/charging could accumulate battery degradation on hot cells resulting in early failure of the battery pack. Current battery systems use a unidirectional coolant flow for battery thermal management. However, due to the nature of the cooling method, the unidirectional cooling systems are prone to show a largest temperature differential ΔTs between the battery cells at fixed flow boundaries, although sophisticated thermal/fluid designs are implemented to make the battery temperature uniform. Here, an innovative battery cooling method ([1]) using a reciprocating cooling flow is proposed. The reciprocating cooling system switches the coolant flow direction periodically by a valve-fan mechanism. By switching the flow direction periodically and thus the cold and hot boundaries of the battery cooling system, the battery cell temperatures are regulated with a very small fluctuation and the temperature differential ΔTs is drastically reduced. In hybrid electric vehicle and fuel cell vehicle applications, the cooling improvement using the new concept would set battery cooling system free of auxiliary air-conditioning system. Parametric study shows that using the reciprocating cooling system for a Li-Ion battery system, an optimum reciprocating period to minimize temperature differential ΔTs and maximum battery temperature Ts,max exists.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3