Utilization of a Graphite Foam Radiator on a Natural Gas Engine-Driven Heat Pump

Author:

Ott R. D.1,Zaltash A.1,Klett J. W.1

Affiliation:

1. Oak Ridge National Laboratory, Oak Ridge, TN

Abstract

A natural gas engine-driven heat pump was outfitted with a graphite foam radiator to demonstrate its thermal efficiency and compare it with that of a conventional radiator. A sequence of tests was performed with the graphite foam radiator operating in series with the standard aluminum radiator. Most aluminum air-to-water radiators exhibit an overall heat transfer coefficient up to 100 W/(m2·K). Laboratory experiments have demonstrated that a graphite foam radiator can achieve an overall heat transfer coefficient up to an order of magnitude larger. The mesophase pitch derived graphite foam is a material that offers excellent thermal management capability. The foam has an accessible surface area of 4 m2/g and an open cell structure with graphitic ligaments aligned parallel to the cell walls, giving it an overall bulk thermal conductivity of up to 175 W/(m·K). The bulk thermal conductivity of aluminum is 180 W/(m·K). The density of the graphite foam is a fifth of that of aluminum and its thermal diffusivity is three times greater than aluminum. These properties allow the graphite foam to be utilized in radiator, or any other heat exchanger, designs that are more efficient than conventional radiators. A graphite foam radiator designed to reject a given amount of heat will be smaller in size, weigh less, require less cooling air, and be quicker at removing heat than a conventional aluminum radiator.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3