The Effect of Cable Dynamics on the Station-Keeping Response of a Moored Offshore Vessel

Author:

Ansari K. A.1,Khan N. U.2

Affiliation:

1. School of Engineering, Gonzaga University, Spokane, Wash. 99258

2. Department of Mechanical Engineering, University of Petroleum and Minerals, Dhahran, Saudi Arabia

Abstract

An anchoring system for an offshore structure must meet certain prescribed requirements controlled by factors such as the site environment, operational constraints and the vessel employed. Its adequacy, survival and ability to stay on site must, therefore, be checked out with proper methods of analysis. The inclusion of cable dynamics is an important consideration in the dynamic analysis of a moored vessel. In this paper, mooring line equations of motion are derived for a multi-component, n-segment model using Lagrange’s modified equation, permitting anchor motion, and then numerically solved to yield time histories of cable displacements and cable tensions for the various cable configurations that can occur. Initial conditions can be provided through the mooring line static catenary equations. The nonlinear restoring force terms in the vessel equations of motion are generated through the dynamic tension- displacement characteristics of individual lines. The equations of motion of the moored vessel subjected to an open ocean environment are then numerically solved to yield time histories of vessel motions and cable tensions. An example involving a moored production barge is examined and results are compared with those of previous work in which a quasi-static cable configuration is employed.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical simulation of multi-material hybrid lines for offshore mooring;Ocean Engineering;2024-08

2. Effects of incident wave directions and mooring line configurations on spar platform with damping plate;OCEANS 2022 - Chennai;2022-02-21

3. Single Anchor Leg Mooring;Encyclopedia of Ocean Engineering;2022

4. Single Anchor Leg Mooring;Encyclopedia of Ocean Engineering;2018-12-08

5. Statics of a three component mooring line;Ocean Engineering;2001-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3