A Correlation Between Vibration Stresses and Flow Features of Steam Turbine Long Blades in Low Load Conditions

Author:

Shibukawa Naoki1,Tejima Tomohiro1,Iwasaki Yoshifumi1,Murakami Itaru1,Saito Ikuo1

Affiliation:

1. Toshiba Corporation, Yokohama, Japan

Abstract

The vibration stress of long steam turbine blades during low load operating conditions is examined in this paper. A series of experiments has been carried out to investigate the vibration stress behavior, and the steady and unsteady pressure fluctuation. It is found that a steady pressure distribution over the blade tip is much to do with the unsteady pressure and fluctuation of the vibration stress. A precise investigation of unsteady wall pressure near blade tip explains the relationship between pressure fluctuation and the vibration stress, and reveals the existence of particular frequency which affects blade axial modes. Blade to blade flow mechanisms and aerodynamic force and properties during low load operating condition were investigated by a steady CFD simulation. FFT of aerodynamic force by another steady full arc CFD simulation provides various pattern of harmonic excitation which account for the behavior of vibration stresses well. The mechanism of the rapid stress increase and a step drop were examined by considering CFD results and measured unsteady pressure data together.

Publisher

ASMEDC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Steam turbine flow path drainage system under different operating conditions;MATEC Web of Conferences;2022

2. Development of last-stage long blades for steam turbines;Advances in Steam Turbines for Modern Power Plants;2022

3. Experimental steam turbine T10MW cold end cooling by water spraying;MATEC Web of Conferences;2021

4. Experimental research on ventilation at T10MW experimental steam turbine;THERMOPHYSICAL BASIS OF ENERGY TECHNOLOGIES (TBET 2020);2021

5. Calibration of blade tip-timing sensor for shrouded 40″ last stage blade;Mechanical Systems and Signal Processing;2018-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3