Modelling of an Aero-Engine Bearing Chamber Using Enhanced CFD Technique

Author:

Peduto Davide1,Hashmi Amir A.1,Dullenkopf Klaus1,Bauer Hans-Jo¨rg1,Morvan Herve2

Affiliation:

1. Karlsruhe Institute of Technology, Karlsruhe, Germany

2. The University of Nottingham, Nottingham, UK

Abstract

This manuscript presents the application of an improved CFD methodology to simulate the scavenge system film flow phenomena in a real aero engine bearing chamber environment i.e. influence of seals and rotational shaft. Near the scavenge off-take, the usual thin film approach is not valid due to the occurrence of relative thick films (up to 5mm, comp. [1]) where film internal dynamics become very important. Therefore, other multiphase modelling techniques need to be explored. Young and Chew suggest in [2] that the Volume Of Fluid (VOF) method is the most suitable technique for air/oil system applications. Hashmi et al. reported in [3] that this free surface method for shear driven thick wall films in the bearing chamber environment needs additional provisions for turbulence modelling. Accordingly, a simple correction is made to the k–ε RNG turbulence model to improve the simulation results. The improved CFD methodology is applied to an engine representative geometry and proves to be robust and computationally efficient. The test conditions in the simulation was chosen in a way to avoid any droplet stripping from the film surface. It is shown that the applied methodology together with the correction in the turbulence modelling prove to play a vital role for a good comparison with experimental data. After validation the simulation results are used to describe the flow phenomena which occur in the bearing chamber for the investigated condition. The introduced CFD modelling technique shows large potential for the development and trouble shooting purposes in the industrial environment.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3