Affiliation:
1. Heat Transfer Laboratory, University of Minnesota, Minneapolis, Minn.
2. NASA Lewis Research Center, Cleveland, Ohio
Abstract
Consideration is given to the radiant interchange within finite-length cylindrical holes, one end of which is open to the environment. The bounding surfaces of the hole are isothermal and radiate in a gray, diffuse manner. The problem is analyzed by applying radiant flux balances to infinitesimal elements of surface, and this gives rise to two simultaneous integral equations. The solutions to these provide such technically interesting results as the distribution of the apparent emissivity and local heat flux along the bounding surfaces and, also, the over-all heat flux streaming from the hole. It is found, for example, that to achieve an apparent emissivity of 0.99, the minimum length of hole is 1.6, 2.6, or 4 diameters depending on whether the surface emissivity ε is 0.9, 0.75, or 0.5. The over-all heat loss results demonstrate the effect of the presence of pits and depressions in increasing the heat loss from a surface.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
112 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献