Regularization Techniques Applied to Boundary Element Methods

Author:

Tanaka Masataka1,Sladek Vladimir2,Sladek Jan2

Affiliation:

1. Department of Mechanical Systems Engineering, Faculty of Engineering, Shinshu University, 500 Wakasato, Nagano 380, Japan

2. Institute of Construction and Architecture, Slovak Academy of Sciences, 842 20 Bratislava, Slovakia

Abstract

This review article deals with the regularization of the boundary element formulations for solution of boundary value problems of continuum mechanics. These formulations may be singular owing to the use of two-point singular fundamental solutions. When the physical interpretation is irrelevant for this topic of computational mechanics, we consider various mechanical problems simultaneously within particular sections selected according to the main topic. In spite of such a structure of the paper, applications of the regularization techniques to many mechanical problems are described. There are distinguished two main groups of regularization techniques according to their application to singular formulations either before or after the discretization. Further subclassification of each group is made with respect to basic principles employed in individual regularization techniques. This paper summarizes the substances of the regularization procedures which are illustrated on the boundary element formulation for a scalar potential field. We discuss the regularizations of both the strongly singular and hypersingular integrals, occurring in the boundary integral equations, as well as those of nearly singular and nearly hypersingular integrals arising when the source point is near the integration element (as compared to its size) but not on this element. The possible dimensional inconsistency (or scale dependence of results) of the regularization after discretization is pointed out. Finally, we discuss the numerical approximations in various boundary element formulations, as well as the implementations of solutions of some problems for which derivative boundary integral equations are required.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3