Multibody Analysis and Control of a Full-Wrist Exoskeleton for Tremor Alleviation

Author:

Wang Jiamin1,Barry Oumar R.1

Affiliation:

1. Department of Mechanical Engineering, Virginia Tech Blacksburg, Blacksburg, VA 24061

Abstract

Abstract Uncontrollable shaking in the human wrist, caused by pathological tremor, can significantly undermine the power and accuracy in object manipulation. In this paper, the design of a tremor alleviating wrist exoskeleton (TAWE) is introduced. Unlike the works in the literature that only consider the flexion/extension (FE) motion, in this paper, we model the wrist joint as a constrained three-dimensional (3D) rotational joint accounting for the coupled FE and radial/ulnar deviation (RUD) motions. Hence TAWE, which features a six degrees-of-freedom (DOF) rigid linkage structure, aims to accurately monitor, suppress tremors, and provide light-power augmentation in both FE and RUD wrist motions. The presented study focuses on providing a fundamental understanding of the feasibility of TAWE through theoretical analyses. The analytical multibody modeling of the forearm–TAWE assembly provides insight into the necessary conditions for control, which indicates that reliable control conditions in the desired workspace can be acquired by tuning the design parameters. Nonlinear regressions are then implemented to identify the information that is crucial to the controller design from the unknown wrist kinematics. The proposed analytical model is validated numerically with V-REP and the result shows good agreement. Simulations also demonstrate the reliable performance of TAWE under controllers designed for tremor suppression and movement assistance.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference42 articles.

1. Essential Tremor;New Engl. J. Med.,2001

2. Essential Tremor: Emerging Views of a Common Disorder;Nat. Rev. Neurol.,2006

3. Parkinson's Disease: Clinical Features and Diagnosis;J. Neurol., Neurosurg. Psychiatry,2008

4. Parkinson's Disease;Lancet,2015

5. Parkinson's Disease and the Bones;Swiss Med. Wkly.,2011

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3