Propagation of Multiple Short-Length-Scale Stall Cells in an Axial Compressor Rotor

Author:

Inoue M.1,Kuroumaru M.1,Tanino T.1,Furukawa M.1

Affiliation:

1. Department of Energy and Mechanical Engineering, Kyushu University, Fukuoka, Japan

Abstract

Evolution and structure of multiple stall cells with short-length-scale in an axial compressor rotor have been investigated experimentally. In a low-speed research compressor rotor tested, a short-length-scale stall cell appeared at first, but did not grow rapidly in size, unlike a so-called “spike-type stall inception” observed in many multistage compressors. Alternatively, the number of cells increased to a certain stable state (a mild stall state) under a fixed throttle condition. In the mild stall state the multiple stall cells, the size of which was on the same order of the inception cell (a few blade spacings), were rotating at 72 percent of rotor speed and at intervals of 4.8 blade spacings. With further throttling, a long-length-scale wave appeared overlapping the multiple short-length-scale waves, then developed to a deep stall state with a large cell. In order to capture the short-length-scale cells in the mild stall state, a so-called “double phase-locked averaging technique” has been developed, by which the flow field can be measured phase locked to both the rotor and the stall cell rotation. Then, time-dependent ensemble averages of the three-dimensional velocity components upstream and downstream of the rotor have been obtained with a slanted hot-wire, and the pressure distributions on the casing wall with high-response pressure transducers. By a physically plausible explanation for the experimental results, a model for the flow mechanism of the short-length-scale stall cell has been presented. The distinctive feature of the stall cell structure is on the separation vortex bubble with a leg traveling ahead of the rotor, with changing the blade in turn on which the vortex leg stands. [S0889-504X(00)00701-7]

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3