A Physics-Informed Two-Level Machine-Learning Model for Predicting Melt-Pool Size in Laser Powder Bed Fusion
Author:
Affiliation:
1. Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802
2. Independent Researcher, State College, PA 16801
Abstract
Funder
National Science Foundation
Pennsylvania State University
Publisher
ASME International
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Link
http://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/143/12/121006/6756652/ds_143_12_121006.pdf
Reference38 articles.
1. Rapid Manufacturing and Rapid Tooling With Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives;CIRP Ann.,2003
2. Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing;CIRP Ann.,2007
3. Influence of Processing Parameters on the Evolution of Melt Pool, Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective Laser Melting;Prog. Addit. Manuf.,2017
4. Influence of Laser Processing Parameters on Porosity in Inconel 718 During Additive Manufacturing;Int. J. Adv. Manuf. Technol.,2019
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A reality-augmented adaptive physics informed machine learning method for efficient heat transfer prediction in laser melting;Journal of Manufacturing Processes;2024-08
2. Progress and Challenges of Additive Manufacturing of Tungsten and Alloys as Plasma-Facing Materials;Materials;2024-04-29
3. What Observables Are Needed for Precision Data-Enabled Learning of Inverse Operators?;Journal of Dynamic Systems, Measurement, and Control;2024-03-11
4. Prediction of melt pool geometry by fusing experimental and simulation data;International Journal of Mechanical Sciences;2024-02
5. Data-Driven Prediction and Uncertainty Quantification of Process Parameters for Directed Energy Deposition;Materials;2023-11-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3