A Physics-Informed Two-Level Machine-Learning Model for Predicting Melt-Pool Size in Laser Powder Bed Fusion

Author:

Ren Yong1,Wang Qian1,Michaleris Panagiotis (Pan)2

Affiliation:

1. Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802

2. Independent Researcher, State College, PA 16801

Abstract

Abstract Laser powder bed fusion (L-PBF) additive manufacturing (AM) is one type of metal-based AM process that is capable of producing high-value complex components with a fine geometric resolution. As melt-pool characteristics such as melt-pool size and dimensions are highly correlated with porosity and defects in the fabricated parts, it is crucial to predict how process parameters would affect the melt-pool size and dimensions during the build process to ensure the build quality. This paper presents a two-level machine-learning (ML) model to predict the melt-pool size during the scanning of a multitrack build. To account for the effect of thermal history on melt-pool size, a so-called (prescan) initial temperature is predicted at the lower-level of the modeling architecture and then used as a physics-informed input feature at the upper-level for the prediction of melt-pool size. Simulated data sets generated from the autodesk'snetfabbsimulation are used for model training and validation. Through numerical simulations, the proposed two-level ML model has demonstrated a high prediction performance, and its prediction accuracy improves significantly compared to a naive one-level ML without using the initial temperature as an input feature.

Funder

National Science Foundation

Pennsylvania State University

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3