Numerical Investigation of the Effect of Knock on Heat Transfer in a Turbocharged Spark Ignition Engine

Author:

Rostampour Arman1,Toosi Ali Nassiri2

Affiliation:

1. Department of Automotive Engineering, Iran University of Science and Technology, Tehran 1651114833, Iran e-mail:

2. Assistant Professor Department of Automotive Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran e-mail:

Abstract

This investigation deals with the EF7 (TC) engine, a dual fuel engine equipped with a turbocharger system, consequently with a high probability of knock inception. In this study, an operating cycle of the engine was simulated using KIVA-3V code. Some modifications were carried out on the KIVA method of calculating pressure in the intake port in order to simulate turbocharger pressure correctly. Auto-ignition and knock were then simulated using the auto-ignition integral model. The modified code and the simulation were verified using three different methods; in-cylinder average pressure, gas temperature of the exhaust port, and auto-ignition timing. The simulation results using the auto-ignition integral model, as compared with the experimental data, proved to be reasonably accurate. Following this validation, the effect of the knock phenomenon on the engine heat transfer through the walls was investigated. The simulations showed that the rate of heat transfer through the walls under knocking conditions is about 2.2 times higher than that under normal conditions. However, it was also shown that the total heat transfer increases about 15%.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3