Design Optimization of a Centrifugal Compressor Impeller Using Radial Basis Neural Network Method

Author:

Kim Jin-Hyuk1,Choi Jae-Ho2,Kim Kwang-Yong1

Affiliation:

1. Inha University, Incheon, Republic of Korea

2. Samsung Techwin, Kyungnam, Republic of Korea

Abstract

This paper presents a procedure for design optimization of a centrifugal compressor. The centrifugal compressor consists of a centrifugal impeller, vaneless diffuser and volute. And, optimization techniques based on radial basis neural network method are used to optimize the impeller of the centrifugal compressor. Latin hypercube sampling of design of experiments is used to generate thirty design points within design spaces. Three-dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by using finite volume approximations and solved on hexahedral grids to evaluate the objective function of an isentropic efficiency. Four variables defining impeller hub and shroud contours are selected as design variables in this optimization. The results of optimization show that the isentropic efficiency of the optimized shape at the design flow coefficient is enhanced by 1.0% and the efficiencies at the off-design points are also improved significantly by the design optimization.

Publisher

ASMEDC

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3