Load Capacity of a Grooved Circular Step Thrust Bearing

Author:

Hossain M. Zakir1,Razzaque M. Mahbubur2

Affiliation:

1. Assistant Professor e-mail:

2. Professor e-mail:  Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh

Abstract

A parametric analysis based on narrow groove theory (NGT) has been presented for estimating the load capacity of a grooved circular step thrust bearing. Three types of grooving arrangements of the bearing surface, namely, (a) both the step and the recess are grooved, (b) only the step is grooved, and (c) only the recess is grooved, are considered. It is found that grooving in the step provides the most significant enhancement on the load capacity. The load capacity and the pumping power loss are affected by the step location, step height, and inertia. There is no benefit of making step location smaller than 0.6 that corresponds to the minimum power loss due to pumping. At a very large value of step location, say 0.85, the load capacity drops drastically. To take advantage of inertia as well as grooving, the dimensionless step location should be 0.6 ∼ 0.85 and the dimensionless step height should be less than 5. The load capacity also depends on groove geometry parameters such as groove inclination, groove depth, and fraction of area grooved. The groove inclination angle has been found to be the most important parameter that determines the increase or decrease in load capacity. For the most enhancement of load capacity, the inclination angle should be 135 deg with the direction of rotation, the groove depth should be at least twice the minimum film thickness, and the fraction of the step surface area grooved should be around 0.5.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3