Modelling, Simulation and Assessment of Solar Thermal Power Plants: A First Step Towards Definition of Best Practice Approaches

Author:

Hirsch Tobias1,Eck Markus1,Buck Reiner1,Dersch Ju¨rgen2,Feldhoff Jan Fabian1,Giuliano Stefano1,Hennecke Klaus2,Lu¨pfert Eckhard2,Schwarzbo¨zl Peter2

Affiliation:

1. German Aerospace Center, Stuttgart, Germany

2. German Aerospace Center, Cologne, Germany

Abstract

With 620 MWel in operation [1] and more than 2.000 MWel under construction, concentrated solar power (CSP) experiences a renaissance mainly in Spain and the USA, but also in many other countries in the earth’s sunbelt. Due to their large capacity (50 MWel and more) and thus large investment, CSP projects are characterised by an extensive project development process. In several stages of this process, mathematical models of the system predicting its energy yield are required, among others to: • assess single CSP projects (e.g., feasibility or due diligence studies), • compare different CSP concepts (e.g., technology, site), • optimise a project (e.g., solar field size, storage capacity), • investigate the influence of component characteristics (e.g., receiver characteristics), • optimise the operation strategy (e.g., on-line surveillance) or to • assess system performance during commissioning. The models used for these different tasks differ in complexity and accuracy, e.g. the accuracy of a model used for project assessment during commissioning has to be higher than a model used for a pre-feasibility study. At the moment, numerous modelling approaches exist and every project developer uses his own system model and assessment methodology. This confusing situation hinders the acceptance of CSP technology by potential investors. This paper presents a methodology for structuring systems into sub-systems. This is the first step towards a standardized modelling approach for CSP systems. It is not the intention of the authors to present a final model and assessment methodology but to start a broader discussion on this important topic. In fact, it aims at initiating an international working group, devoted to the definition of guidelines for modelling, simulation and assessment of CSP systems, covering all CSP technologies such as solar towers, parabolic troughs, linear Fresnel collectors and solar dishes.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3