The Impact of Arbitrary Oriented Ellipsoidal Shell With a Barrier: Analytical Study

Author:

Mansoor-Baghaei Shahab1,Sadegh Ali M.1

Affiliation:

1. Department of Mechanical Engineering, The City College of the City University of New York, New York, NY 10031 e-mail:

Abstract

In this paper, a closed form solution of an arbitrary oriented hollow elastic ellipsoidal shell impacting with an elastic flat barrier is presented. It is assumed that the shell is thin under the low speed impact. Due to the arbitrary orientation of the shell, while the pre-impact having a linear speed, the postimpact involves rotational and translational speed. Analytical solution for this problem is based on Hertzian theory (Johnson, W., 1972, Impact Strength of Materials, University of Manchester Institute of Science and Technology, Edward Arnold Publication, London) and the Vella’s analysis (Vella et al., 2012, “Indentation of Ellipsoidal and Cylindrical Elastic Shells,” Phys. Rev. Lett., 109, p. 144302) in conjunction with Newtonian method. Due to the nonlinearity and complexity of the impact equation, classical numerical solutions cannot be employed. Therefore, a linearization method is proposed and a closed form solution for this problem is accomplished. The closed form solution facilitates a parametric study of this type of problems. The closed form solution was validated by an explicit finite element method (FEM). Good agreement between the closed form solution and the FE results is observed. Based on the analytical method the maximum total deformation of the shell, the maximum transmitted force, the duration of the contact, and the rotation of the shell after the impact were determined. Finally, it was concluded that the closed form solutions were trustworthy and appropriate to investigate the impact of inclined elastic ellipsoidal shells with an elastic barrier.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference29 articles.

1. The Axisymmetric Response of a Fluid Filled Spherical Shell to a Local Radial Impulse—A Model for Head Injury;J. Biomech.,1969

2. An Ellipsoidal Model for Studying Response of Head Impacts;Acta. Bioeng. Biomech.,2010

3. An Analytical Model to Predict the Response of Fluid Filled Shells to Impact: A Model for Blunt Head Impacts;J. Sound Vib.,2003

4. Indentation of Ellipsoidal and Cylindrical Elastic Shells;Phys. Rev. Lett.,2012

5. Stresses and Small Displacements of Shallow Spherical Shells II;J. Math. Phys.,1947

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3