Affiliation:
1. Laboratoire Réactions et Génie des Procédés, Université de Lorraine-CNRS, Nancy 54000, France
2. GE Gas Power France , Belfort 90000, France
3. Université de Technologie de Belfort Montbéliard, IRTES-LERMPS , Belfort 90010, France
Abstract
Abstract
Hydrogen-compatible gas turbines are one way to decarbonize electricity production. However, burning and handling hydrogen is not trivial because of its high reactivity and tendency to detonate. Mandatory safety parameters, such as auto-ignition delay times, can be estimated thanks to predictive detailed kinetic models, but with significant calculation times that limit coupling with fluid mechanic codes. An auto-ignition prediction tool was developed based on an artificial intelligence (AI) model for fast computations and an implementation into an explosion model. A dataset of ignition delay times (IDTs) was generated automatically using a recent detailed kinetic model from National University of Galway (NUIG) selected from the literature. Generated data cover a wide operating range and different compositions of fuels. Clustering problems in sample points were avoided by a quasi-random Sobol sequence, which covers uniformly the entire input parameter space. The different algorithms were trained, cross-validated, and tested using a database of more than 70,000 ignitions cases of natural gas/hydrogen blends calculated with the full kinetic model by using a common split of 70/30 for training, testing. The AI model shows a high degree of robustness. For both the training and testing datasets, the average value of the correlation coefficient was above 99.91%, and the mean absolute error (MAE) and the mean square error (MSE) were around 0.03 and lower than 0.04, respectively. Tests showed the robustness of the AI model outside the ranges of pressure, temperature, and equivalence ratio of the dataset. A deterioration is, however, observed with increasing amounts of large alkanes in the natural gas.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献