Nonclassical Heat Transfer and Recent Progress

Author:

Su Chuanjin12,Wu Huan12,Dai Lingyun12,Zhang Zhihan12,Li Suixuan12,Hu Yongjie1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of California, Los Angeles , Los Angeles, CA 90095

2. University of California, Los Angeles

Abstract

Abstract Heat transfer in solids has traditionally been described by Fourier's law, which assumes local equilibrium and a diffusive transport regime. However, advancements in nanotechnology and the development of novel materials have revealed nonclassical heat transfer phenomena that extend beyond this traditional framework. These phenomena, which can be broadly categorized into those governed by kinetic theory and those extending beyond it, include ballistic transport, phonon hydrodynamics, coherent phonon transport, Anderson localization, and glass-like heat transfer. Recent theoretical and experimental studies have focused on characterizing these nonclassical behaviors using methods such as the Boltzmann transport equation, molecular dynamics, and advanced spectroscopy techniques. In particular, the dual nature of phonons, exhibiting both particle-like and wave-like characteristics, is fundamental to understanding these phenomena. This review summarizes state-of-the-art findings in the field, highlighting the importance of integrating both particle and wave models to fully capture the complexities of heat transfer in modern materials. The emergence of new research areas, such as chiral and topological phonons, further underscores the potential for advancing phonon engineering. These developments open up exciting opportunities for designing materials with tailored thermal properties and new device mechanisms, potentially leading to applications in thermal management, energy technologies, and quantum science.

Funder

National Institutes of Health

National Science Foundation

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3