Strip Extensiometry for Comparison of the Mechanical Response of Bovine, Rabbit, and Human Corneas

Author:

Hoeltzel David A.1,Altman Peter1,Buzard Kurt2,Choe Kang-il1

Affiliation:

1. Department of Mechanical Engineering, Columbia University, New York, NY 10027

2. Department of Surgery, Division of Opthalmology, University of Nevada, School of Medicine, Las Vegas, NV 89102

Abstract

Specimens of bovine, rabbit, and human corneas were systematically tested in uniaxial tension to experimentally determine their effective nonlinear stress-strain relations, and hysteresis. Cyclic tensile tests were performed over the physiologic load range of the cornea, up to a maximum of 10 percent strain beyond slack strain. Dimensional changes to corneal test specimens, due to varying laboratory environmental conditions, were also assessed. The measured stress-strain data was found to closely fit exponential power function relations typical of collagenous tissues when appropriate account was taken of specimen slack strain. These constitutive relations are very similar for rabbit, human and bovine corneas; there was no significant difference between the species after preconditioning by one cycle. The uniaxial stress strain curves for all species behave similarly in that their tangent moduli increase at high loads and decrease at low loads as a function of cycling. In the bovine and rabbit data, there is a general trend towards more elastic behavior from the first to second cycles, but there is little variation in these parameters from the second to third cycles. In comparison, the human data demonstrates relatively little change between cycles. Increases in width of corneal test specimens, up to a maximum of 2 percent were found to occur under 95 percent relative humidity test conditions over 10 minutes elapsed time test periods, while specimens which were exposed to normal laboratory conditions (45 percent RH) were found to shrink in width up to a maximum of 9.5 percent over the same elapsed time period. The thickness of the test specimens were observed to decrease by 3 percent in 95 percent relative humidity and by 12 percent in 45 percent relative humidity over the same elapsed time period.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 216 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3