Numerical Investigation of the Dynamical Behavior of a Fluid-Filled Microparticle Suspended in Human Arteriole

Author:

El Jirari I.1,El Baroudi A.1,Ammar A.1

Affiliation:

1. LAMPA, Arts et Metiers Institute of Technology, HESAM University, Angers 49035, France

Abstract

Abstract The study of artificial microparticles (capsules and vesicles) has gained a growing interest with the emergence of bio-engineering. One of their promoting applications is their use as therapeutic vectors for drug delivery, when capsules and vesicles release their capacity in a targeted environment. The dynamic behavior of capsules and vesicles in confined or unbounded flows was widely studied in the literature and their mechanical response was truthfully described using constitutive laws with good agreement with experiences. However, in a context of biological application, to our knowledge, none of published studies investigating the mechanical response of deformable microparticle took into account the real physiological conditions: the rheological properties of blood such as carrying fluid and the mechanical properties of blood vessels. In this paper, we consider a hyperelastic microparticle suspended in human arteriole. We investigate the deformation of the microparticle resulting from its interaction with blood flow and the arteriolar wall using various capillary numbers and respecting physiological properties of blood and arterial wall. The influence of the blood viscosity model (Newtonian versus shear thinning) is investigated and a comparison with a rigid microchannel and a muscle-embedded arteriole is carried out. The fluid structure interaction (FSI) problem is solved using arbitrary Lagrangian Eulerian (ALE) method. Our simulations have revealed that the arteriolar wall distensibility deeply influences both the deformation and velocity of the microparticle: the deformation strongly increases while the velocity decreases in comparison to an infinitely rigid wall. In the context of therapeutic procedure of targeted drug-delivery, a particular attention should be addressed to these observations, in particular for their implication in the burst mechanism.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3