Evaluation of Transport Properties Effect on the Performance of Gas-Condensate Reservoirs Using Compositional Simulation

Author:

Al Ghamdi Bander N.1,Ayala H. Luis F.1

Affiliation:

1. John and Willie Leone Family Department of Energy and Mineral Engineering, EMS Energy Institute, The Pennsylvania State University, 110 Hosler Building, University Park, PA 16802 e-mail:

Abstract

Gas-condensate productivity is highly dependent on the thermodynamic behavior of the fluids-in-place. The condensation attendant with the depletion of gas-condensate reservoirs leads to a deficiency in the flow of fluids moving toward the production channels. The impairment is a result of condensate accumulation near the production channels in an immobility state until reaching a critical saturation point. Considering the flow phenomenon of gas-condensate reservoirs, tight formations can be inevitably complex hosting environments in which to achieve economical production. This work is aimed to assess the productivity gas-condensate reservoirs in a naturally fractured setting against the effect of capillary pressure and relative permeability constraints. The severity of condensate coating and magnitude of impairment was evaluated in a system with a permeability of 0.001 mD using an in-house compositional simulator. Several composition combinations were considered to portray mixtures ascending in complexity from light to heavy. The examination showed that thicker walls of condensate and greater impairment are attained with mixture containing higher nonvolatile concentrations. In addition, the influence of different capillary curves was insignificant to the overall behavior of fluids-in-place and movement within the pores medium. A greater impact on the transport of fluids was owed to relative permeability curves, which showed dependency on the extent of condensate content. Activating diffusion was found to diminish flow constraints due to the capturing of additional extractions that were not accounted for under Darcy's law alone.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference27 articles.

1. Chemical Composition Determines Behavior of Reservoir Fluids;Pet. Eng. Int.,1993

2. A New Two-Constant Equation of State;Ind. Eng. Chem. Fundam.,1976

3. Disjoining Pressure and Gas Condensate Coupling in Gas Condensate Reservoirs;ASME J. Energy Resour. Technol.,2014

4. The Interrelation Between Gas and Oil Relative Permeabilities;Prod. Mon.,1954

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3